
ABSTRACT
Background and Objective: Accurate estimation of tree volume is essential for
evaluating forest productivity, biomass accumulation and carbon storage. This
study aimed to develop a scalable and interpretable machine-learning framework
for predicting tree volume using integrated forest health indicators.
Materials and Methods: A multi-index forest health dataset incorporating
canopy, soil and ecological variables was used to train and evaluate predictive
models. Three machine-learning algorithms-Linear Regression, Random Forest
and Extreme Gradient Boosting (XGBoost)-were implemented and assessed
using a 70/15/15 training, validation and testing data split. Model interpretability
was examined using SHapley Additive Explanations (SHAP) to identify the most
influential predictors.
Results:    Among   the   evaluated   models,   XGBoost   demonstrated   superior
predictive performance on the independent test dataset, achieving a Root Mean
Square Error (RMSE) of 2.143, a Mean Absolute Error (MAE) of 1.602 and a
coefficient of determination (R²) of 0.947. SHAP analysis indicated that canopy
width, crown density and soil fertility were the most significant contributors to
tree volume estimation.
Conclusion:  The   findings   highlight   the   effectiveness   of   gradient-boosted
machine-learning models for accurate and interpretable tree volume prediction.
The proposed approach provides a robust, data-driven framework with strong
potential for large-scale forest monitoring, carbon accounting and sustainable
forest resource management.
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INTRODUCTION
Forests represent one of the most significant terrestrial carbon sinks, playing a
critical role in regulating the global climate, conserving biodiversity and sustaining
essential ecosystem services. Accurate quantification of tree volume constitutes a
foundational    component    in    the   estimation   of   forest   biomass   and   carbon
sequestration potential[1]. Conventional approaches, including destructive sampling
and the application of allometric equations, can yield precise estimates; however,
their applicability to large-scale or continuous forest monitoring is limited due to
their dependence on intensive fieldwork, manual measurements and site-specific
parameter calibration[2].

Recent advancements in machine learning (ML) have substantially enhanced
ecological modeling by facilitating the extraction of meaningful patterns from
complex, high-dimensional datasets. Unlike traditional statistical methods, ML
algorithms can integrate diverse variables describing soil properties, canopy
structure    and    climatic    conditions    without    requiring     explicit     functional
assumptions[3]. Ensemble learning techniques-particularly Random Forests and
gradient-boosted decision tree models such as XGBoost have demonstrated strong
predictive performance in forest-related applications, including biomass estimation,
species distribution modeling and assessments of forest productivity[4,5]. Their
effectiveness is largely attributed to their ability to capture  non-linear relationships
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and interactions among predictors while simultaneously
providing quantitative measures of variable importance[6].

In      addition      to      predictive      accuracy,     model
interpretability has emerged as  a  critical requirement for
the  adoption  of  ML  approaches in ecological research and
decision-making.      The      SHAP      (SHapley      Additive
Explanations)  framework  offers  a  robust  and   transparent
methodology for quantifying the contribution of individual
input  variables   to   model   predictions,   thereby   enabling
ecological  interpretation  of  complex,  data-driven   models
that are often perceived as “black boxes”[7].

Against this background, the present study aims to
develop    an    interpretable,    data-driven    framework   for
estimating tree volume using a comprehensive set of forest
health indicators. Specifically, the objectives are to:

C Develop    and    compare    multiple   machine-learning
algorithms with respect to regression accuracy

C Identify  and  quantify  the  most influential biophysical
variables governing tree volume

C Establish  a  reproducible  analytical  workflow  that
integrates    data     preprocessing,     model     selection,
performance        evaluation         and         SHAP-based
interpretability analysis

By integrating advanced machine-learning techniques
with transparent  feature  attribution, this study contributes
to  the   advancement   of   forest   inventory   methodologies
and  supports  improved  large-scale  assessments  of   forest
productivity and carbon sequestration potential.

MATERIALS AND METHODS
The  research  methodology   establishes   a   systematic

framework for the development, training and evaluation of 

machine-learning models aimed at predicting tree volume
using  forest  health  indicators.  This  approach   emphasizes
reproducibility, transparency and adherence to established
standards in ecological modeling. As illustrated in Fig. 1, the
workflow encompasses six key stages:

C Data collection
C Data preprocessing
C Model framework
C Model training and validation
C Evaluation metrics
C Comparative analysis

Data collection: The primary data source for this study was
the  dataset forest_health_data_with_tree_volume.csv, which
comprises 4,648 observations and 16 explanatory variables
describing multiple facets of forest health. Each observation
corresponds to an individual tree or forest plot, characterized
by canopy, soil and environmental attributes.

To  better  visualize  the  dataset  composition,  Table 1
presents the major variables, their descriptions and their data
types.

The dataset was compiled to capture forest productivity
across heterogeneous ecological conditions. The integration
of  biophysical  and   environmental   features   ensures   that
the  resulting  models  can  effectively   represent   nonlinear
interactions among canopy structure, soil fertility and tree
growth potential.

Data preprocessing: Preprocessing prepared the raw dataset
for machine-learning implementation by cleaning, encoding,
scaling and partitioning data. Each step ensured consistency
and minimized bias.

Table 1: Summary of variables in the forest health dataset
Variable category Variable name Description Data type
Canopy indicators Canopy_Width Width of tree canopy measured in meters Numerical

Crown_Density Density or thickness of the tree crown Numerical
Tree_Height Vertical height of the tree (m) Numerical

Soil Indicators Fertility_Index Composite soil fertility score Numerical
Organic_Matter Percentage of organic matter in the soil Numerical
pH_Level Soil acidity or alkalinity level Numerical

Environmental Indicators Slope Degree of inclination of terrain (°) Numerical
Aspect Direction the slope faces (°) Numerical
Biodiversity_Index Measure of species richness and diversity Numerical

Categorical variable Health_Status Tree condition classification (Healthy/Moderate/Poor) Categorical
Dependent variable Tree_Volume Total tree volume per observation (m³) Numerical

Fig. 1: Research Workflow Diagram
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Missing-value treatment:
C Numerical variables were imputed using the median

value
C Categorical  variables  were  imputed  using  the   mode

(most frequent category)

Encoding of categorical variables:
C The  attribute  Health_Status   was   transformed   using

One-Hot Encoding, producing binary columns for each
class (Healthy, Moderate, Poor).

Feature scaling:
C Continuous      variables      were     normalized     using

StandardScaler to prevent dominance of large-valued
features during model training

Correlation audit:
C A Pearson correlation matrix was generated to identify

multicollinearity among numeric predictors. Variables
with |r| >0.90 were reviewed for redundancy

Data partitioning: The dataset was randomly divided into
three subsets:

C 70% for training
C 15% for validation
C 15% for testing

This split ensures that model tuning and testing remain
unbiased and generalizable[6].

Model  framework:  This  study  utilized  three   supervised
regression algorithms-Linear Regression, Random Forest
Regressor  and  XGBoost  (Extreme  Gradient   Boosting)-to
predict  tree  volume  using  forest-health  indicators.   These
models  were  selected  to  progressively  capture  increasing
levels of complexity, from linear relationships to ensemble-
based nonlinear structures.

Linear regression: The Linear Regression model assumes
that the dependent variable (tree volume) can be expressed
as a linear combination of the independent variables X1,
X2,...,Xn. The general mathematical formulation, following
Douglas et al.[8], is presented as follows:

Y = β0+β1X1+β2X2+...+βnXn+ε

Where:
Y : Predicted tree volume (m³)
$0 : Intercept term
$1 : Regression coefficient for feature
Xi : Independent variables (e.g., canopy width, soil

fertility)
, : Error term (residual)

The model minimizes the sum of squared residuals to
find  the  best-fit  line,  using  the  Ordinary   Least   Squares
(OLS) estimator:

$
ˆ  = (XTX)G1 XTY

This baseline model provides a reference for assessing
how    nonlinear    ensemble   methods   improve   predictive
performance.

Random forest regressor: Random Forest is an ensemble
learning algorithm that employs the principle of bootstrap
aggregation   (bagging).   The   method   generates   multiple
independent decision trees by sampling random subsets of
both the data and predictor variables. Each individual tree
produces a prediction and the final model output is obtained
by averaging the predictions across all trees.

 
T (t)

i
t 1

1Y y
T =

= 

Where:
T : Total number of trees in the forest

ŷi
(t) : Predicted value from tree

Random Forest mitigates overfitting by averaging the
predictions of multiple uncorrelated decision trees. It also
provides an automatic assessment of variable importance by
quantifying the Mean Decrease in Impurity (MDI) or the
Mean  Decrease  in  Accuracy  (MDA)  resulting   from   the
permutation of each predictor. This feature enables the
model to effectively capture nonlinear interactions among
variables, such as canopy width and soil fertility.

XGBoost  (extreme  gradient  boosting):  XGBoost  is   an
advanced    ensemble   learning   algorithm   that   constructs
decision trees sequentially, with each successive tree aiming
to correct the residual errors of the preceding trees[5]. The
algorithm optimizes a differentiable loss function using
gradient descent and incorporates regularization terms to
reduce overfitting, enhancing model generalization.

The model prediction for an instance is represented as
the sum of regression trees:


K

k i ki
k 1

f (x ),y f F
=

= ε

Where:
fk : An individual regression tree
F : Space of all possible trees

The    objective    function    minimized    by   XGBoost
combines a loss term and a regularization term:
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
i

n K

i k
i 1 k 1
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= + Ω 

with the regularization term defined as:

T
2

j
j 1

1(f ) T w
2 =

Ω =γ + λ

Where:

l (yi,ŷi) : Differentiable loss function (e.g., squared error)
γ : Penalty on the number of leaves
λ : Regularization parameter for leaf weights

This formulation allows XGBoost to achieve both high
predictive accuracy and strong generalization performance,
even on moderately sized ecological datasets.

Model training and validation: Each model was trained
using the training set (70%) and tuned using the validation
set (15%). The training process followed these stages:

C Training phase:
C Models learned parameter weights and structure

from input features to predict the target Y
C Random Forest and XGBoost automatically

handled feature interactions and nonlinearity

C Validation phase:
C Hyperparameters such as tree depth, learning rate

and number of estimators were optimized based on
validation error

C The Root Mean Squared Error (RMSE) served as
the optimization criterion

C Testing phase:
C The remaining 15% of data served as an

independent test set to evaluate the generalization
capability of the best-performing model

C Model storage and visualization:
C The trained models were saved using joblib and

performance graphs (predicted vs. actual, residual
plots) were generated for evaluation.

Evaluation metrics: To objectively measure predictive
accuracy, three metrics were computed: RMSE, MAE and
R².

Root Mean Squared Error (RMSE)[9]: Measures average
model prediction error magnitude:


n

2
i i

i 1

1RMSE (y y )
n =

= −

Mean Absolute Error (MAE): Represents average absolute
deviation between actual and predicted values[9]:


n

i i
i 1

1MAE y y
n =

= −

Coefficient of  determination (R²): Indicates the proportion
of  variance  in  the  dependent  variable  explained   by   the
model[9]:

 2
2 i i

2
i

(y y )R 1
(y y)

 −= −
 −

Lower RMSE and MAE indicate higher accuracy, while
higher R² reflects stronger explanatory power. These metrics
collectively provide a balanced evaluation of bias, precision
and fit.

Comparative   analysis:   To   identify   the   most   suitable
algorithm for forest-volume prediction, the performance of
Linear  Regression,   Random   Forest   and   XGBoost   was
compared using the same test data.

Ranking criteria:
C Models  were  ranked  based  on  RMSE,  MAE  and R²

results
C The model achieving the lowest RMSE and highest R²

was considered optimal

Result summary:
C XGBoost achieved the best overall performance with

RMSE = 2.143, MAE = 1.602 and R² = 0.947
C Its    superior    performance    stems    from   sequential

boosting,    which    minimizes    residual   errors   more
efficiently than bagging (Random Forest)

Interpretation stage:
C SHAP (SHapley Additive Explanations) was applied to

interpret feature contributions in the best model
C The top three influential variables were canopy width,

soil fertility index and biodiversity index

Thus, XGBoost was selected as the final predictive
framework    due    to    its    balance    of    high     accuracy,
interpretability and computational efficiency.

RESULTS AND DISCUSSION
This section presents the empirical results obtained from

model training and evaluation and discusses the findings
derived from the forest health dataset in the context of
predictive   performance,   inter-variable   relationships   and
ecological relevance.
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Fig. 2: Distribution of Tree_Volume values in the dataset

Fig. 3: Correlation matrix of numerical forest-health indicators

Dataset insights: Prior to model development, exploratory
data analysis was performed to examine the statistical
characteristics of the dataset and to identify relationships
among the  variables.  Figure  2  illustrates  the distribution
of the target variable, Tree_Volume. The distribution is
right-skewed,   indicating   a   higher   frequency   of   small-
and   medium-sized   trees,   while   large-volume   trees  are
comparatively rare. Such a pattern is characteristic of natural
forest stands, where younger or smaller trees typically
outnumber mature individuals.

Correlation analysis demonstrates that canopy-related
attributes, particularly Canopy_Width and Crown_Density,
exhibit  strong   positive   associations   with   Tree_Volume.
Soil-related    variables,    including     Fertility_Index     and
Organic_Matter,    show    moderate    positive   correlations,
underscoring their role in supporting biomass accumulation
(Fig. 3). In contrast, slope displays a negative correlation
with tree volume, suggesting that steeper terrain restricts tree
growth due to reduced soil stability and moisture retention.
Collectively,  these  findings indicate that forest productivity
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Fig. 4: Predicted vs. actual Tree_Volume using the XGBoost model

Fig. 5: Residuals vs. predicted Tree_Volume for the XGBoost model

Table 2: Training results of machine learning
Model RMSE MAE R²
Linear Regression 5.618 4.342 0.654
Random Forest 2.859 2.131 0.891
XGBoost 2.143 1.602 0.947

is governed by an interplay of structural and environmental
factors,  thereby  supporting  the  use   of   multivariate   and
nonlinear modeling approaches for accurate prediction.

Model     performance:     Three     supervised     regression
algorithms-Linear     Regression,     Random     Forest     and
XGBoost-were evaluated using identical training, validation
and test datasets. The performance metrics, including
RMSE, MAE and R², are summarized in Table 2. Among
the    evaluated    models,    XGBoost    yielded   the   lowest
prediction    errors    and     the     highest     coefficient     of

determination. This superior performance can be attributed
to   the   gradient   boosting   framework,   which   iteratively
minimizes     residual     errors    and    effectively    captures
complex  nonlinear  interactions  among   canopy,   soil   and
environmental variables.

Figure 4 presents a comparison between predicted and
observed Tree_Volume  values for the XGBoost model. The
close alignment of data points along the 45° reference line
indicates strong agreement between predictions and actual
measurements.  Furthermore,  the  residual   plot   shows   a
symmetric  dispersion  of  residuals  around  zero,   with   no
discernible trends, suggesting minimal systematic bias and
adequate fulfillment of model assumptions (Fig. 5). Overall,
these quantitative and visual assessments demonstrate that
XGBoost outperforms both Random Forest and Linear
Regression in modeling complex ecological datasets.
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Fig. 6: SHAP summary showing global feature contributions

Model interpretation: To improve model interpretability,
the   best-performing   algorithm   (XGBoost)   was    further
examined using SHAP (SHapley Additive Explanations),
which quantifies the contribution of each predictor to the
model output. The SHAP summary plot illustrates the
influence of individual variables on tree volume predictions
across   all   observations   (Fig.  6).  The  analysis  identifies
Canopy_Width, Soil_Fertility_Index and Biodiversity_Index
as the three most influential predictors.

Specifically, larger canopy widths and denser crowns
contribute positively to predicted tree volume, reflecting
enhanced photosynthetic capacity. Increased soil fertility
and organic matter content further promote growth by
improving    nutrient    availability    and    water    retention.
Conversely,  steeper  slopes  are   associated   with   negative
SHAP  values,  consistent   with   ecological   evidence   that
challenging topography constrains tree growth. These results
confirm    the   biological   plausibility   of   the   model   and
demonstrate  its  ability  to  integrate  data-driven  prediction
with established ecological principles.

Comparative    discussion:    The    comparative     analysis
highlights  the  superior  performance  of  ensemble learning
approaches  in  ecological  prediction  tasks.  The   XGBoost
model  reduced  RMSE  by  approximately  25%  relative  to
Random  Forest  and  by  more  than   60%   compared   with
Linear  Regression.  These  gains  can  be  attributed  to   the
gradient  boosting  mechanism,  which  iteratively  optimizes 
weak  learners  and  effectively  minimizes   both   bias   and
variance[5].

The  prominence of canopy and soil-related variables as
dominant predictors is consistent with previous studies. For 
instance,    Mori    and     Mizumachi[1]     reported     strong
associations  between forest structural attributes and biomass
accumulation.        Likewise,        Random         Forest-based
investigations[3]    identified    canopy    size   as   a   critical
determinant of forest productivity, reinforcing the alignment
of the present findings with established ecological theory.

Beyond quantitative performance improvements, the
incorporation of SHAP-based interpretability substantially
enhances    the    practical    applicability   of   the   proposed
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modeling framework for forest monitoring and management.
This approach provides a scalable and transparent alternative
to conventional allometric equations, thereby facilitating
large-scale    carbon    stock    assessment    and    supporting
informed, adaptive forest management strategies.

CONCLUSION
This study demonstrates the effective application of

machine-learning approaches for predicting tree volume
using  multi-index  forest  health   data.   Among   the   three
supervised models evaluated-Linear Regression, Random
Forest   and   XGBoost-the   XGBoost   regressor    achieved
the    highest    predictive   performance   (RMSE   =   2.143,
MAE  =  1.602  and  R²  =  0.947).  These results indicate a
strong capacity for generalization across heterogeneous
ecological conditions and highlight the model’s ability to
capture    both   linear   and   nonlinear   interactions   among
canopy,  soil  and  environmental  variables. The  integration
of  SHAP  (SHapley  Additive   Explanations)   substantially
enhanced model interpretability, transforming the predictive
framework into a transparent analytical tool. SHAP-based
analysis  identified  canopy   width,   soil   fertility   and   the
biodiversity index  as  the  most  influential  determinants of
tree volume. These findings are consistent with established
ecological    principles,    whereby    broader    canopies   are
associated with greater light interception and photosynthetic
capacity and fertile soils promote growth through improved
nutrient   availability.   By   coupling   data-driven  modeling
with   ecological   interpretability,   this   research   advances
conventional    forest    measurement    practices    that    rely
primarily    on    allometric    equations    and   manual   field
sampling.    The    proposed    machine-learning    workflow-
encompassing    data    acquisition,    preprocessing,    model
training, evaluation and interpretation-offers a reproducible
and scalable framework for forest resource assessment.
From  a  practical  standpoint,  the   findings   contribute   to
enhanced   monitoring   of   forest   productivity,    improved
estimation   of   carbon   stocks   and   informed  biodiversity
conservation   planning.    Moreover,    the    methodological
framework is readily transferable to other environmental
modeling contexts, including biomass estimation and the
integration     of    remote-sensing    data.    Future    research
should focus on incorporating temporal dynamics, such as
seasonal or interannual growth patterns and satellite-derived
indicators to improve spatial scalability. Additionally, hybrid
approaches that integrate XGBoost with deep learning or
spatial ensemble techniques may further enhance predictive
performance while preserving interpretability. In conclusion,
this study establishes that gradient-boosted machine-learning
models,     when    combined    with    explainable    artificial
intelligence techniques such as SHAP, provide a robust,
transparent and sustainable approach for understanding and
managing forest ecosystems in the context of data-driven
environmental decision-making.

RECOMMENDATIONS
Based on the findings and conclusions of this study, the

following recommendations are proposed to strengthen
forest    monitoring,    data-driven    management    and    the
development of sustainable environmental policies.

Relevant    agencies,    such    as    the    Department   of
Environment and Natural Resources (DENR) and the Forest
Management  Bureau   (FMB),   are   encouraged   to   adopt
advanced machine-learning models, including XGBoost, as
complementary tools to conventional field-based surveys in
order to improve the accuracy and efficiency of large-scale
tree volume estimation.

The integration of multi-year and seasonal datasets is
recommended  to  better  capture  temporal   variability   and
long-term forest growth dynamics.

Model interpretability outputs should be leveraged to
inform targeted management interventions, such as soil
fertility enhancement or canopy structure regulation, thereby
supporting evidence-based decision-making and resource
prioritization.
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