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ABSTRACT

Background and Objective: Accurate estimation of tree volume is essential for
evaluating forest productivity, biomass accumulation and carbon storage. This
study aimed to develop a scalable and interpretable machine-learning framework
for predicting tree volume using integrated forest health indicators.

Materials and Methods: A multi-index forest health dataset incorporating
canopy, soil and ecological variables was used to train and evaluate predictive
models. Three machine-learning algorithms-Linear Regression, Random Forest
and Extreme Gradient Boosting (XGBoost)-were implemented and assessed
using a 70/15/15 training, validation and testing data split. Model interpretability
was examined using SHapley Additive Explanations (SHAP) to identify the most
influential predictors.

Results: Among the evaluated models, XGBoost demonstrated superior
predictive performance on the independent test dataset, achieving a Root Mean
Square Error (RMSE) of 2.143, a Mean Absolute Error (MAE) of 1.602 and a
coefficient of determination (R2?) of 0.947. SHAP analysis indicated that canopy
width, crown density and soil fertility were the most significant contributors to
tree volume estimation.

Conclusion: The findings highlight the effectiveness of gradient-boosted
machine-learning models for accurate and interpretable tree volume prediction.
The proposed approach provides a robust, data-driven framework with strong
potential for large-scale forest monitoring, carbon accounting and sustainable
forest resource management.

INTRODUCTION

Forests represent one of the most significant terrestrial carbon sinks, playing a
critical role in regulating the global climate, conserving biodiversity and sustaining
essential ecosystem services. Accurate quantification of tree volume constitutes a
foundational component in the estimation of forest biomass and carbon
sequestration potential[1]. Conventional approaches, including destructive sampling
and the application of allometric equations, can yield precise estimates; however,
their applicability to large-scale or continuous forest monitoring is limited due to
their dependence on intensive fieldwork, manual measurements and site-specific
parameter calibration[2].

Recent advancements in machine learning (ML) have substantially enhanced
ecological modeling by facilitating the extraction of meaningful patterns from
complex, high-dimensional datasets. Unlike traditional statistical methods, ML
algorithms can integrate diverse variables describing soil properties, canopy
structure and climatic conditions without requiring explicit
assumptions[3]. Ensemble learning techniques-particularly Random Forests and
gradient-boosted decision tree models such as XGBoost have demonstrated strong
predictive performance in forest-related applications, including biomass estimation,
species distribution modeling and assessments of forest productivity[4,5]. Their
effectiveness is largely attributed to their ability to capture non-linear relationships
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and interactions among predictors while simultaneously
providing quantitative measures of variable importance[6].

In addition to predictive accuracy, model
interpretability has emerged as a critical requirement for
the adoption of ML approaches in ecological research and
decision-making. The SHAP (SHapley Additive
Explanations) framework offers a robust and transparent
methodology for quantifying the contribution of individual
input variables to model predictions, thereby enabling
ecological interpretation of complex, data-driven models
that are often perceived as “black boxes”[7].

Against this background, the present study aims to
develop an interpretable, data-driven framework for
estimating tree volume using a comprehensive set of forest
health indicators. Specifically, the objectives are to:

Develop and compare multiple machine-learning
algorithms with respect to regression accuracy
Identify and quantify the most influential biophysical
variables governing tree volume

Establish a reproducible analytical workflow that
integrates data preprocessing, model selection,
performance evaluation and SHAP-based
interpretability analysis

By integrating advanced machine-learning techniques
with transparent feature attribution, this study contributes
to the advancement of forest inventory methodologies
and supports improved large-scale assessments of forest
productivity and carbon sequestration potential.

MATERIALS AND METHODS

The research methodology establishes a systematic
framework for the development, training and evaluation of

Table 1: Summary of variables in the forest health dataset
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machine-learning models aimed at predicting tree volume
using forest health indicators. This approach emphasizes
reproducibility, transparency and adherence to established
standards in ecological modeling. Asillustrated in Fig. 1, the
workflow encompasses six key stages:

e Data collection

e Data preprocessing

e Model framework

e Model training and validation
e  Evaluation metrics

e Comparative analysis

Data collection: The primary data source for this study was
the dataset forest_health_data_with_tree_volume.csv, which
comprises 4,648 observations and 16 explanatory variables
describing multiple facets of forest health. Each observation
corresponds to an individual tree or forest plot, characterized
by canopy, soil and environmental attributes.

To better visualize the dataset composition, Table 1
presents the major variables, their descriptions and their data
types.

The dataset was compiled to capture forest productivity
across heterogeneous ecological conditions. The integration
of biophysical and environmental features ensures that
the resulting models can effectively represent nonlinear
interactions among canopy structure, soil fertility and tree
growth potential.

Data preprocessing: Preprocessing prepared the raw dataset
for machine-learning implementation by cleaning, encoding,
scaling and partitioning data. Each step ensured consistency
and minimized bias.

Variable category Variable name Description Data type
Canopy indicators Canopy_Width Width of tree canopy measured in meters Numerical
Crown_Density Density or thickness of the tree crown Numerical
Tree_Height Vertical height of the tree (m) Numerical
Soil Indicators Fertility_Index Composite soil fertility score Numerical
Organic_Matter Percentage of organic matter in the soil Numerical
pH_Level Soil acidity or alkalinity level Numerical
Environmental Indicators Slope Degree of inclination of terrain (°) Numerical
Aspect Direction the slope faces (°) Numerical
Biodiversity_Index Measure of species richness and diversity Numerical
Categorical variable Health_Status Tree condition classification (Healthy/Moderate/Poor) Categorical
Dependent variable Tree_Volume Total tree volume per observation (m3) Numerical

A Data Model
Data collection )
preprocessing framework
Forest health dataset Cleaning one-hot Linear regression,

Random forest,
XGBoost algorithms

Encoding scaling

Fig. 1: Research Workflow Diagram
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Missing-value treatment:

¢ Numerical variables were imputed using the median
value

e Categorical variables were imputed using the mode
(most frequent category)

Encoding of categorical variables:

¢ The attribute Health_Status was transformed using
One-Hot Encoding, producing binary columns for each
class (Healthy, Moderate, Poor).

Feature scaling:

e Continuous using
StandardScaler to prevent dominance of large-valued
features during model training

variables were normalized

Correlation audit:

¢ A Pearson correlation matrix was generated to identify
multicollinearity among numeric predictors. Variables
with Irl >0.90 were reviewed for redundancy

Data partitioning: The dataset was randomly divided into
three subsets:

e 70% for training
e 15% for validation
e 15% for testing

This split ensures that model tuning and testing remain
unbiased and generalizable[6].

Model framework: This study utilized three supervised
regression algorithms-Linear Regression, Random Forest
Regressor and XGBoost (Extreme Gradient Boosting)-to
predict tree volume using forest-health indicators. These
models were selected to progressively capture increasing
levels of complexity, from linear relationships to ensemble-
based nonlinear structures.

Linear regression: The Linear Regression model assumes
that the dependent variable (tree volume) can be expressed
as a linear combination of the independent variables X,
X,,....X,. The general mathematical formulation, following
Douglas et al[8], is presented as follows:

Y = BB X B Xt B X e

Where:
Y : Predicted tree volume (m3)
B, : Intercept term

B, : Regression coefficient for feature

X, : Independent variables (e.g., canopy width, soil
fertility)

€ : Error term (residual)
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The model minimizes the sum of squared residuals to
find the best-fit line, using the Ordinary Least Squares
(OLS) estimator:

B=X"X)" XY

This baseline model provides a reference for assessing
how nonlinear ensemble methods improve predictive
performance.

Random forest regressor: Random Forest is an ensemble
learning algorithm that employs the principle of bootstrap
aggregation (bagging). The method generates multiple
independent decision trees by sampling random subsets of
both the data and predictor variables. Each individual tree
produces a prediction and the final model output is obtained
by averaging the predictions across all trees.

§_ 1 ig] ()
TS
Where:
T : Total number of trees in the forest
y." : Predicted value from tree

Random Forest mitigates overfitting by averaging the
predictions of multiple uncorrelated decision trees. It also
provides an automatic assessment of variable importance by
quantifying the Mean Decrease in Impurity (MDI) or the
Mean Decrease in Accuracy (MDA) resulting from the
permutation of each predictor. This feature enables the
model to effectively capture nonlinear interactions among
variables, such as canopy width and soil fertility.

XGBoost (extreme gradient boosting): XGBoost is an
advanced ensemble learning algorithm that constructs
decision trees sequentially, with each successive tree aiming
to correct the residual errors of the preceding trees[S5]. The
algorithm optimizes a differentiable loss function using
gradient descent and incorporates regularization terms to
reduce overfitting, enhancing model generalization.

The model prediction for an instance is represented as
the sum of regression trees:

R K
Yi= ka (x;),f,eF
k=1

Where:
f, : Anindividual regression tree
F : Space of all possible trees

The objective function minimized by XGBoost
combines a loss term and a regularization term:
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. n ~ K
Obj = ZI(Yi 21 +Z Q(f,)

i=1 k=1

with the regularization term defined as:
1 T

Q(f)=4T + EAZWJZ

=l

Where:

1 (yi,y,) : Differentiable loss function (e.g., squared error)
vy : Penalty on the number of leaves
A Regularization parameter for leaf weights

This formulation allows XGBoost to achieve both high
predictive accuracy and strong generalization performance,
even on moderately sized ecological datasets.

Model training and validation: Each model was trained
using the training set (70%) and tuned using the validation
set (15%). The training process followed these stages:

¢ Training phase:
¢ Models learned parameter weights and structure
from input features to predict the target Y
¢ Random Forest and XGBoost automatically
handled feature interactions and nonlinearity

¢ Validation phase:

e Hyperparameters such as tree depth, learning rate
and number of estimators were optimized based on
validation error

¢ The Root Mean Squared Error (RMSE) served as
the optimization criterion

¢ Testing phase:
e The remaining 15%
independent test set to evaluate the generalization
capability of the best-performing model

of data served as an

¢ Model storage and visualization:
¢ The trained models were saved using joblib and
performance graphs (predicted vs. actual, residual
plots) were generated for evaluation.

Evaluation metrics: To objectively measure predictive
accuracy, three metrics were computed: RMSE, MAE and

R2

Root Mean Squared Error (RMSE)[9]: Measures average
model prediction error magnitude:

RMSE= [13(y, -3,
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Mean Absolute Error (MAE): Represents average absolute
deviation between actual and predicted values[9]:

MAE=L3" |y, -5,
n

Coefficient of determination (R?): Indicates the proportion
of variance in the dependent variable explained by the
model[9]:

20y, — ;)2

Rio]- 20 -y)

Lower RMSE and MAE indicate higher accuracy, while
higher R?reflects stronger explanatory power. These metrics
collectively provide a balanced evaluation of bias, precision
and fit.

Comparative analysis: To identify the most suitable
algorithm for forest-volume prediction, the performance of
Linear Regression, Random Forest and XGBoost was
compared using the same test data.

Ranking criteria:

e Models were ranked based on RMSE, MAE and R?
results

e The model achieving the lowest RMSE and highest R?
was considered optimal

Result summary:

*  XGBoost achieved the best overall performance with
RMSE =2.143, MAE = 1.602 and R? = 0.947

e Its superior performance stems from sequential
boosting, which minimizes residual errors more
efficiently than bagging (Random Forest)

Interpretation stage:

«  SHAP (SHapley Additive Explanations) was applied to
interpret feature contributions in the best model

e The top three influential variables were canopy width,
soil fertility index and biodiversity index

Thus, XGBoost was selected as the final predictive
framework due to its balance of high accuracy,

interpretability and computational efficiency.

RESULTS AND DISCUSSION

This section presents the empirical results obtained from
model training and evaluation and discusses the findings
derived from the forest health dataset in the context of
predictive performance, inter-variable relationships and
ecological relevance.
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Fig. 2: Distribution of Tree_Volume values in the dataset
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Fig. 3: Correlation matrix of numerical forest-health indicators

Dataset insights: Prior to model development, exploratory
data analysis was performed to examine the statistical
characteristics of the dataset and to identify relationships
among the variables. Figure 2 illustrates the distribution
of the target variable, Tree_Volume. The distribution is
right-skewed, indicating a higher frequency of small-
and medium-sized trees, while large-volume trees are
comparatively rare. Such a pattern is characteristic of natural
forest stands, where younger or smaller trees typically
outnumber mature individuals.
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Correlation analysis demonstrates that canopy-related
attributes, particularly Canopy_Width and Crown_Density,
exhibit strong positive associations with Tree_Volume.
Soil-related variables, including Fertility_Index and
Organic_Matter, show moderate positive correlations,
underscoring their role in supporting biomass accumulation
(Fig. 3). In contrast, slope displays a negative correlation
with tree volume, suggesting that steeper terrain restricts tree
growth due to reduced soil stability and moisture retention.
Collectively, these findings indicate that forest productivity
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Fig. 4: Predicted vs. actual Tree_Volume using the XGBoost model
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Fig. 5: Residuals vs. predicted Tree_Volume for the XGBoost model

Table 2: Training results of machine learning

Model RMSE MAE R?

Linear Regression 5.618 4.342 0.654
Random Forest 2.859 2.131 0.891
XGBoost 2.143 1.602 0.947

is governed by an interplay of structural and environmental
factors, thereby supporting the use of multivariate and
nonlinear modeling approaches for accurate prediction.

Three
Regression,

Model performance:
algorithms-Linear

supervised regression

Random Forest and
XGBoost-were evaluated using identical training, validation
and test datasets. The performance metrics, including
RMSE, MAE and R?, are summarized in Table 2. Among
XGBoost yielded the lowest

the highest of

the evaluated models,

prediction errors and coefficient
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10
Predicted Tree_Volume

determination. This superior performance can be attributed
to the gradient boosting framework, which iteratively
minimizes residual errors and effectively captures
complex nonlinear interactions among canopy, soil and
environmental variables.

Figure 4 presents a comparison between predicted and
observed Tree_Volume values for the XGBoost model. The
close alignment of data points along the 45° reference line
indicates strong agreement between predictions and actual
measurements. Furthermore, the residual plot shows a
symmetric dispersion of residuals around zero, with no
discernible trends, suggesting minimal systematic bias and
adequate fulfillment of model assumptions (Fig. 5). Overall,
these quantitative and visual assessments demonstrate that
XGBoost outperforms both Random Forest and Linear

Regression in modeling complex ecological datasets.
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Fig. 6: SHAP summary showing global feature contributions

Model interpretation: To improve model interpretability,
the best-performing algorithm (XGBoost) was further
examined using SHAP (SHapley Additive Explanations),
which quantifies the contribution of each predictor to the
model output. The SHAP summary plot illustrates the
influence of individual variables on tree volume predictions
across all observations (Fig. 6). The analysis identifies
Canopy_Width, Soil_Fertility_Index and Biodiversity_Index
as the three most influential predictors.

Specifically, larger canopy widths and denser crowns
contribute positively to predicted tree volume, reflecting
enhanced photosynthetic capacity. Increased soil fertility
and organic matter content further promote growth by
improving nutrient availability and water retention.
Conversely, steeper slopes are associated with negative
SHAP values, consistent with ecological evidence that
challenging topography constrains tree growth. These results
confirm the biological plausibility of the model and
demonstrate its ability to integrate data-driven prediction
with established ecological principles.
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Comparative discussion: The comparative analysis
highlights the superior performance of ensemble learning
approaches in ecological prediction tasks. The XGBoost
model reduced RMSE by approximately 25% relative to
Random Forest and by more than 60% compared with
Linear Regression. These gains can be attributed to the
gradient boosting mechanism, which iteratively optimizes
weak learners and effectively minimizes both bias and
variance[5].

The prominence of canopy and soil-related variables as
dominant predictors is consistent with previous studies. For
instance, Mori and Mizumachi[l] reported strong
associations between forest structural attributes and biomass
accumulation. Likewise,
investigations[3] identified canopy size as a critical
determinant of forest productivity, reinforcing the alignment
of the present findings with established ecological theory.

Beyond quantitative performance improvements, the
incorporation of SHAP-based interpretability substantially
enhances the practical applicability of the proposed

Random Forest-based
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modeling framework for forest monitoring and management.
This approach provides a scalable and transparent alternative
to conventional allometric equations, thereby facilitating
large-scale carbon stock assessment and supporting
informed, adaptive forest management strategies.

CONCLUSION

This study demonstrates the effective application of
machine-learning approaches for predicting tree volume
using multi-index forest health data. Among the three
supervised models evaluated-Linear Regression, Random
Forest and XGBoost-the XGBoost regressor achieved
the highest predictive performance (RMSE = 2.143,
MAE = 1.602 and R? = 0.947). These results indicate a
strong capacity for generalization across heterogeneous
ecological conditions and highlight the model’s ability to
capture both linear and nonlinear interactions among
canopy, soil and environmental variables. The integration
of SHAP (SHapley Additive Explanations) substantially
enhanced model interpretability, transforming the predictive
framework into a transparent analytical tool. SHAP-based
analysis identified canopy width, soil fertility and the
biodiversity index as the most influential determinants of
tree volume. These findings are consistent with established
ecological principles, whereby broader canopies are
associated with greater light interception and photosynthetic
capacity and fertile soils promote growth through improved
nutrient availability. By coupling data-driven modeling
with ecological interpretability, this research advances
conventional forest measurement practices that rely
primarily on allometric equations and manual field
sampling. The proposed machine-learning workflow-
encompassing data acquisition, preprocessing, model
training, evaluation and interpretation-offers a reproducible
and scalable framework for forest resource assessment.
From a practical standpoint, the findings contribute to
enhanced monitoring of forest productivity, improved
estimation of carbon stocks and informed biodiversity
conservation planning. Moreover, the methodological
framework is readily transferable to other environmental
modeling contexts, including biomass estimation and the
integration of remote-sensing data. Future research
should focus on incorporating temporal dynamics, such as
seasonal or interannual growth patterns and satellite-derived
indicators to improve spatial scalability. Additionally, hybrid
approaches that integrate XGBoost with deep learning or
spatial ensemble techniques may further enhance predictive
performance while preserving interpretability. In conclusion,
this study establishes that gradient-boosted machine-learning
models, when combined with explainable artificial
intelligence techniques such as SHAP, provide a robust,
transparent and sustainable approach for understanding and
managing forest ecosystems in the context of data-driven
environmental decision-making.

33

Insights in Computer Science, Vol 1 (2025)

RECOMMENDATIONS

Based on the findings and conclusions of this study, the
following recommendations are proposed to strengthen
forest monitoring, data-driven management and the
development of sustainable environmental policies.

Relevant agencies, such as the Department of
Environment and Natural Resources (DENR) and the Forest
Management Bureau (FMB), are encouraged to adopt
advanced machine-learning models, including XGBoost, as
complementary tools to conventional field-based surveys in
order to improve the accuracy and efficiency of large-scale
tree volume estimation.

The integration of multi-year and seasonal datasets is
recommended to better capture temporal variability and
long-term forest growth dynamics.

Model interpretability outputs should be leveraged to
inform targeted management interventions, such as soil
fertility enhancement or canopy structure regulation, thereby
supporting evidence-based decision-making and resource
prioritization.
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