
ABSTRACT
Background and Objective: This systematic review examines how fixed-point
weight bit-width influences the classification accuracy of convolutional neural
networks deployed in edge and embedded systems.
Materials and Methods: Studies evaluating uniform min–max quantization of
weights across 1-32 bits were reviewed, focusing on work that isolates weight
precision while keeping activations in float32 and maintaining consistent network
architecture, training and evaluation procedures. Research relevant to Field
Programmable Gate Array (FPGA) and Application-Specific Integrated Circuit
(ASIC) implementations was prioritised.
Results: Across the literature, weight precisions of 5-6 bits consistently provide
a strong balance between accuracy and hardware efficiency for MNIST-level
tasks. Accuracy deteriorates below 5 bits, while higher precisions offer negligible
gains relative to increased resource use.
Conclusion: Fixed-point weight bit-width is a key parameter for efficient CNN
deployment in constrained hardware environments. Simple word-length sweeps
offer practical guidance for selecting precision and complement existing work on
hardware-centric neural network design.
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INTRODUCTION
Modern deep neural networks deliver high accuracy across a wide range of
applications, including image classification, disease diagnosis, neuromorphic
sensing and smart agriculture[1,2]. However, this performance often requires
substantial computational and memory resources, which are difficult to
accommodate in edge and embedded platforms where area, latency and power
budgets are highly constrained. To address these limitations, an expanding body of
research explores dedicated hardware solutions[3-5].

Siddique et al.[6] have developed several FPGA-based neuromorphic and deep-
learning architectures targeting spiking neural networks and low-cost accelerators.
These    include    a    Tempotron-based   neuromorphic   computer   enabling   high-
throughput online SNN learning with low synaptic overhead, a supervised SNN
engine based on the HaSiST scheme and specialised systems such as SpikoPoniC
and N-AquaRAM for real-time aquaponics monitoring[6-9]. These platforms
estimate fish length and weight or monitor aquaponic conditions while consuming
only modest FPGA resources. Additionally, a hardware-based deep-learning system
for disease diagnosis demonstrates that carefully chosen activation functions and
low-cost hardware structures can achieve high accuracy on Virtex-6 devices[10].

Another line of work by Siddique et al.[11] presents a 218-GOPS accelerator
employing a cost-efficient surrogate-gradient method to address the dying-ReLU
problem. In digital agriculture, user-centred systems such as AgFAB illustrate how
efficient edge inference can integrate seamlessly with farmer-facing mobile
interfaces to support practical field deployment[12].

Despite their diverse applications, these works share several common features:
they optimise neuron models, learning rules and dataflow for hardware efficiency
and they frequently rely on reduced-precision arithmetic.
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Nevertheless, most studies examine only a limited set
of bit-width choices for weights and activations, fixing these
values without systematically evaluating their impact on
performance. Comprehensive analyses of how classification
accuracy varies with weight word length-particularly on
standard benchmarks-remain comparatively rare.

This study addresses that gap by isolating a single
parameter: The  weight  word  length  in  a  fixed-point
representation. We quantify its direct effect on classification
accuracy  in  a  standard  MNIST  convolutional  neural
network, with an emphasis on clarity, reproducibility and
practical relevance rather than maximising accuracy or
hardware throughput. The findings provide a straightforward
reference for selecting weight precision in more complex
neuromorphic and accelerator architectures.

The main contributions of this work are as follows:

C A controlled post-training quantization study in which
only the weight bit-width is varied from 1 to 32 bits,
while all training and evaluation conditions remain
fixed.

C An empirical demonstration that accuracy saturates
above 8 bits, whereas 3-4 bits offer a practical balance
between accuracy and storage efficiency for MNIST-
level tasks

C A concise discussion relating these findings to
hardware-oriented design decisions in low-cost
neuromorphic and deep-learning accelerators, where
bit-width directly influences memory usage, bandwidth
requirements and computational cost

Hardware oriented neural and neuromorphic systems:
Several  studies  conducted  by  Siddique et al.[6-8] focus on
the development of low-cost, high-throughput neuromorphic
and deep-learning systems that are directly relevant to fixed-
point  design.  A   neuromorphic   computer   based   on   the
Tempotron learning rule and population coding achieves an
approximate 15× speedup on a general-purpose device and
processes millions of samples per second on a Virtex-6
FPGA while maintaining low synaptic hardware  cost[6].
The NME-HaSiST system introduces a supervised SNN
backpropagation  scheme  that  avoids  computationally
expensive  operations  such  as  error  normalization  and
weight-threshold balancing, achieving ~97.5% accuracy on
MNIST    using   158,800   synapses[7].   Its   corresponding
inference  engine  employs  a   hard-sigmoid-based   training
scheme and attains giga-synaptic-operations-per-second
performance    with    very    low    slice-register   and   LUT
utilization per synapse.

SpikoPoniC and N-AquaRAM extend these principles
to smart agriculture applications. SpikoPoniC uses SNNs for
fish length and weight estimation in aquaponic systems,
achieving over 84 million classifications per second with
fewer  than 1.1k slice registers[8]. N-AquaRAM implements

a  hardware-efficient  smooth  activation  function  in  a
neuromorphic  accelerator  for  aquaponic  monitoring,
reaching approximately 40 million classifications per second
with only a few thousand slice registers[9]. A related deep-
learning hardware design for disease diagnosis employs
cost-efficient activation functions to achieve ~98.23%
accuracy on medical datasets while remaining significantly
more   affordable   than   many   specialized   hardware
platforms[10].

The  218-GOPS  neural  accelerator  introduces  a
surrogate-gradient mechanism to mitigate gradient vanishing
and the dying-ReLU problem, enabling the use of ReLU
across all network layers[11]. This accelerator reaches
~98.39%   accuracy  on  MNIST  with  fewer  than  159k
synapses  and  delivers   approximately   218  GOPS   on  a
low-end Virtex-6 device with low per-synapse hardware
cost.

Collectively, these systems demonstrate that activation-
function design, learning rules and dataflow must be tailored
to the underlying hardware platform. They also  highlight
bit-width as a critical design parameter; however, none of
these studies systematically isolates and analyses the
accuracy-bit-width trade-off. The present work addresses
this targeted but practically important gap by evaluating the
impact of fixed-point weight precision on the accuracy of a
simple CNN.

Human centred digital agriculture and edge intelligence:
The AgFAB study focuses on a farmer-centred digital
agriculture platform designed to support smallholder farmers
in developing countries[12]. Using human-centred design
principles, the authors identify key user requirements for
mobile and computing applications and evaluate prototype
interfaces  using  the  System  Usability  Scale  (SUS).  The
AgFAB prototype achieved an average SUS score of 72.37,
indicating an acceptable and user-friendly design and a
paired t-test further suggested strong potential for real-world
adoption.

Although, AgFAB does not directly address neural
network hardware, it provides important context for
environments in which lightweight fixed-point models may
eventually be deployed. Modern digital agriculture systems
increasingly integrate user-facing tools with on-device
sensing, classification and predictive analytics. In such
scenarios, fixed-point  neural  accelerators-such as those
used in SpikoPoniC, N-AquaRAM, or the disease-diagnosis
engine-could process sensor data efficiently, while users
interact with the system through accessible interfaces like
AgFAB.

Viewed in this broader context, fixed-point word-length
analyses such as the present study contribute a foundational
component to a larger design space that spans hardware
efficiency, computational constraints and user-experience
considerations.
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MATERIALS AND METHODS
Network and dataset: The classification model employed
in this study is a compact convolutional neural network
composed of two convolutional layers followed by two fully
connected layers. The first convolutional layer processes the
single-channel MNIST input and generates 32 feature maps
using 3×3 kernels. The second convolutional layer increases
the representation to 64 feature maps, also with 3×3 kernels.
A 2×2 max-pooling operation is applied to reduce the spatial
resolution. The resulting feature maps are flattened into a
9,216-dimensional vector and passed to a fully connected
layer comprising 128 ReLU-activated units. A final fully
connected layer produces 10 output logits corresponding to
the MNIST digit classes.

The dataset used is the standard MNIST handwritten
digit benchmark, consisting of 60,000 training images and
10,000 test images. All images are 28×28-pixel greyscale
samples and input normalization is performed by scaling
pixel intensities to the range [0, 1] via division by 255.

Training protocol: The baseline model is trained in float32
with exactly the same hyper-parameters as the reference
script:

C Optimizer: Adam (weight decay = 0)
C Learning rate: 1 × 10!3

C Batch size: 64
C Epochs: 3
C Normalization: Mean = 0.1307, std = 0.3081 (standard

MNIST)

Quantization  setup:  Only  the  network  weights  are
quantized after training; all activations and intermediate
computations remain in full float32 precision. For a weight
tensor x and a target bit-width b (where b<32), uniform
min–max quantization is applied as follows:

qlevels = 2b

max min
8

levels

x – xScale
q 1 10−=

− +

( )min
q

Round x  x
x

Scale
−

=

x = xq×scale+xmin

The  quantized  weights   are  written  back  into  the
original float32 model, which is then evaluated directly. In
this    dequantized    configuration,    inference    incurs     no
quantization error on the weights. Although no hardware
prototype  is  implemented  in  this  study,   we   define   two
hardware-relevant metrics to contextualize the results:

Model size (weights only): The memory required to store
all network weights at a given bit-width, excluding minor
overheads such as scale parameters.

Relative bandwidth proxy: A quantity proportional to
model size, under the assumption that weight transfers
dominate traffic during model loading or update.

Both metrics scale linearly with the number of bits per
weight, providing a straightforward estimate of storage and
bandwidth savings: Reducing bit-width directly reduces
memory footprint and data-movement cost.

RESULTS AND DISCUSSION
Figure 1 illustrates the effect of weight  quantization

bit-width on classification accuracy. The results indicate that
a precision of 3-4 bits provide an effective compromise
between accuracy and storage efficiency, whereas precision
above 8 bits yields no measurable improvement, as accuracy
has already saturated.

Overall, the findings support the following guideline for
MNIST-scale classification tasks:

C 8 bits: Negligible accuracy loss relative to float32
C 5-6 bits: Moderate degradation (approximately 1-5%

points, depending on the run)
C #4 bits: Substantial accuracy deterioration

These observations align with prior research on
hardware-efficient neural and neuromorphic systems by
Siddique et al.[11]. The 218 GOPS accelerator demonstrates
that the selection of activation functions and surrogate
gradient strategies can substantially enhance hardware
efficiency in ReLU-based networks without compromising
accuracy[11]. Likewise, Tempotron-based neuromorphic
computing, the HaSiST engine, SpikoPoniC, N-AquaRAM
and FPGA-based diagnostic systems all rely on reduced-
precision arithmetic to achieve high throughput and efficient
resource utilization[6-10].

The present results can inform early-stage precision
selection in neuromorphic accelerator design. For example,
in systems with approximately 155 k synapses for MNIST,
reducing weight precision from 8 bits to 6 bits can decrease
synaptic storage by roughly one quarter and reduce memory
bandwidth requirements. The corresponding reduction in
accuracy is generally small and may be further mitigated
through limited quantization-aware fine-tuning.

Neuromorphic   platforms   employing   Tempotron
learning,   supervised   SNN   architectures    such    as
NME-HaSiST    and    application-specific    accelerators
including SpikoPoniC and N-AquaRAM, as well as medical
diagnostic accelerators, all depend on efficient arithmetic
and carefully selected bit-widths[8-10]. The 218 GOPS
accelerator further underscores the  importance  of optimized 
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Fig. 1: Impact of weight size on MNIST classification accuracy

activation and gradient design[11]. In parallel with these
developments,    a    concise   and   transparent   word-length
analysis such as the present study can serve as a practical
tool for guiding precision choices prior to more complex
hardware–algorithm co-design stages. These insights are
also relevant to human-centered digital agriculture platforms
such as AgFAB, which emphasize usability and cost-
efficiency for smallholder farming applications[12].

CONCLUSION
This study systematically examined the influence of

fixed-point weight quantization on the classification
accuracy of a convolutional neural network applied to the
MNIST dataset. By varying the weight bit-width from 1 to
32 bits while keeping all other architectural and training
parameters constant, the results demonstrate a clear trade-off
between  precision  and  model  performance.  Accuracy
remains effectively unchanged relative to float32 when
using 8 bits or more and remains largely stable at 6 bits, with
only moderate degradation observed at 5-6 bits. In contrast,
accuracy declines markedly at 4 bits and collapses rapidly
below this threshold. These findings indicate that 3-4 bits
represent the lower limit at which a meaningful balance
between storage efficiency and acceptable accuracy can still
be achieved.

The results reinforce the importance of bit-width
selection as a simple yet powerful design parameter for
edge-oriented hardware accelerators. Reducing weight
precision for example, from 8 bits to 6 bits can yield
substantial savings in memory footprint and bandwidth (e.g.,
approximately one-quarter reduction for a 155k-synapse
neuromorphic accelerator), with minimal accuracy loss,

particularly when paired with quantization-aware fine-
tuning. Although deliberately focused on a compact CNN,
this empirical sweep aligns with broader research into
hardware-efficient neural network design.

Future work should extend this analysis to larger
convolutional networks, spiking neural networks and
implementations more tightly coupled to FPGA or ASIC
platforms. Overall, the study highlights that weight bit-width
remains a critical, tunable parameter for balancing accuracy,
computational cost and storage efficiency and merits explicit
consideration   alongside   more   prominent   algorithmic
innovations.
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