
ABSTRACT
Background and Objective: Renal cell carcinoma (RCC) is a heterogeneous
group of kidney tumours with diverse molecular landscapes, necessitating a
deeper understanding and novel biomarkers for effective diagnosis and treatment.
The study aimed to elucidate specific gene expression signatures common to the
sub-types and identifying hub genes that could be potential therapeutic targets in
renal cell carcinoma through integrative analysis of gene expression profiles.
Materials and Methods: Renal cell carcinoma characterized by aberrant cell
cycle regulation and immune evasion driven by genetic mutations, was
investigated using three mRNA microarray datasets (GSE6344, GSE40435,
GSE15641) from the Gene Expression Omnibus. Comprehensive bioinformatics
tools    including    GEO2R,    DAVID,    STRING    and    Cytoscape    identified
differentially expressed genes and performed gene ontology and KEGG pathway
enrichment analyses.
Results: Differential expression analysis uncovered 36 common DEGs, notably
HADH, SCARB1 and SFRP1, involved in critical cellular functions such as renal
water homeostasis, metabolic regulation and glycolysis/gluconeogenesis. These
genes were enriched in cellular compartments like extracellular exosome, plasma
membrane and mitochondrion, emphasizing their roles in RCC pathophysiology.
Protein-protein Interaction (PPI) network analysis  identified 12 hub genes (ALB,
ALDOB,  AQP2,  G6PC,  GK,  HAO2,   HPD,   NPHS2,   SCARB1,   SLC12A3,
SLC34A1    and    UMOD)    essential    in    metabolic    reprogramming,   signal
transduction and ion transport, processes critical to RCC progression.
Conclusion: The study highlights the metabolic adaptations, immune evasion
strategies    and    dysregulated    signalling    pathways    contributing    to    RCC
development,    offering    valuable   insights   into   the   molecular   mechanisms
underlying tumorigenesis.
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INTRODUCTION
Renal cell carcinoma (RCC) is a heterogenous group of tumours arising from the
renal epithelium, accounting for approximately 90% of all kidney cancers. Despite
advancements in diagnostics techniques and treatment modalities, RCC remains a
formidable challenge due to its diverse molecular landscape, clinical behaviour and
variable response to therapy. The classification of RCC into distinct subtypes,
including clear cell, papillary, chromophobe and others, underscore its complexity
and the need for subtype-specific therapeutic strategies.

The diverse array of histologic and genetic subgroups of RCC as identified and
documented by Hsieh et al.1, Siegel et al.2 and Li  et  al.3  and  projections  from
Sung et al.4 and Chen et al.5 suggest an anticipated increase in RCC incidence,
estimating 493, 262 new cases constituting a 9.1% rise in total cancer cases, along
with 175, 098 RCC-related mortalities representing 3.7% of all cancer deaths.

In addition to rare and benign subtypes such as collecting duct RCC, papillary
adenoma,    hybrid   oncolytic   chromophobe,   multilocular   cystic   clear  cell  and
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oncocytomas, these presents the disease as a heterogenous
disease characterised by histopathological variants6-8. The
clear cell as emphasised by Hsieh et al.1 and Clark and
Zhang8, constitutes the predominant and deadliest of all the
histological subtypes, representing approximately 75-80%
of the cases. Subsequently, papillary, further stratified into
two distinct subtypes, accounts for 15% of cases, followed
by chromophobe, comprising roughly 5% of cases.

The RCC manifests several hallmark characteristics,
including dysregulated cell growth, apoptosis evasion,
angiogenesis and metabolic rewiring. Notable molecular
players implicated in the disease pathogenesis include
cyclin-dependent protein kinase 2 (CDK2), tumour necrosis
factor  receptor-associated  factor  1  (TRAF1),  integrin   $4
(ITGB4),  lactate  dehydrogenase   A   (LDHA)   and   solute
carrier proteins (SLCs)9-17. Understanding the roles of these
molecules in RCC biology may offer insights into disease
progression and potential therapeutic interventions.

In clinical practice, early-stage in RCC is typically
managed through nephrectomy, while advanced stages
necessitate systemic therapies such as Tyrosine Kinase
Inhibitors (TKIs) and Immune Checkpoint Inhibitors
(ICIs)18. Recently, combination therapies involving TKIs
and ICIs have demonstrated improved progression-free
survival in advanced clear cell RCC patients19. However, the
use of combination therapies may also entail increased
toxicity compared to monotherapies, presenting a clinical
challenge20. Moreover, the emergence of primary or
acquired treatment resistances underscores the need for
novel therapeutic targets and biomarkers to overcome
clinical hurdles associated with RCC management21,22.

The clear cell subtype has garnered considerable
attention in research due to its prevalence and aggressive
nature within the spectrum of carcinoma subtypes. However,
despite extensive investigation, the precise mechanistic
underpinnings driving the onset and progression of RCC
remain incompletely elucidated, with various genetic,
metabolic and cellular factors implicated23. Given its
substantial morbidity and mortality rates, there is a pressing
need for a deeper understanding of RCC's aetiology and the
identification of novel biomarkers for diagnosis, prognosis
and therapy.

The RCC typically evolves incrementally over time,
with initial genetic alterations culminating in progressive
phenotypic changes leading to oncogenic transformation24.
Numerous studies have utilized RNA sequencing (RNA-seq)
methodologies to comprehensively examine cancer-related
alterations in gene expression, generating intricate datasets25.
Through an integrative analysis of gene expression profiles
in RCC, particularly focusing on subtype-specific signatures
and therapeutic targets, a more nuanced comprehension of
the disease progression and therapeutic susceptibilities can
be achieved. Leveraging existing  RNA-seq  datasets  holds

promise as a potent strategy for identifying improved disease
biomarkers that could enhance diagnostic accuracy and
treatment planning for affected individuals26.

Aim of the study: The aim of the study was to bridge the
existing    gap    in    knowledge    regarding   the   molecular
landscape    of   renal   cell   carcinoma   by   conducting   a
comprehensive   integrative   analysis   of   gene   expression
profiles. Leveraging the datasets GSE6344, GSE40435 and
GSE 15641. This study seeks to elucidate specific gene
expression signatures common to the sub-types and
identifying hub genes that could be potential therapeutic
targets in RCC.

Objectives of the study: The objectives of the study were
to:

C Acquisition of data from GEO omnibus and preprocess
gene expression data from the datasets GSE6344,
GSE40435 and GSE15641 to ensure uniformity and
compatibility for downstream analysis

C Utilise GEO2R an online statistical tool to identify
DEGs between different RCC subtypes and normal
kidney tissue controls within each dataset and R
programming to identify common DEGs among the
three datasets

C Perform integrative analysis to identify subtype-specific
expression signatures associated with clear cell,
papillary, chromophobe and other rare subtypes, if
applicable

C Conduct functional annotation and pathway enrichment
signatures to elucidate the biological processes and
pathways enriched in the identified common DEGs

C Identify hub genes from the common DEGs and their
functions as related to RCC

MATERIALS AND METHODS
Acquisition of datasets: The datasets for this dissertation
were acquired from the GEO database. The three gene
expression datasets for the study were: GSE 40435
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GS
E40435), GSE 6344 (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=6344) and GSE 15641 (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=15641). The dataset for
GSE 40435 has age range of 42-72 years and contains 101
pairs of clear cell renal cell carcinoma tumours and healthy
adjacent tissue samples. The basic information regarding
each patent for this dataset were gender, age, tumour grade
and tissue type. For GSE 6344; the dataset has two platforms
(GPL96 and GPL97), only the GPL96 was used in the
analysis. This dataset has 10 pairs of tumour and normal
samples, the information contained were source name,
characteristics   and   title,  while  GSE  15641  dataset  has
6    chromophobe    samples,     32     clear     cell     samples,

2



Elele Kingsley and Wang Mengyuan Acta Biological Sciences, Vol 1 (2025)

12 oncocytoma samples, 11 papillary samples, 8 transitional
cell samples and 23 normal human kidney tissue samples.
The information contained were source name, tissue type,
title and accession numbers.

Differential expression analysis:  The  online  software
tool GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc
=GSE40435; https://www.ncbi.nlm.nih.gov/geo/geo2r/?
acc=GSE6344 and https://www.ncbi.nlm.nih.gov/geo/geo
2r/?acc=GSE15641) was used to conduct differential
expression analysis for each dataset to identify genes that
were significantly up- or down-regulated between conditions
specified for each dataset. Using GEO2R online software,
samples were divided into two or more groups based on the
information on the disease status and the DEGs were
selected. In the analysis, Benjamin-Hochberg method was
used to determine the false discovery rate and the adjusted
p-value was used to reduce the likelihood of false positive
errors for datasets GSE 6344 and GSE 40435 while
Bonferroni was used for dataset GSE 15641 to determine the
false positives and allow the post-hoc comparisons to
provide logFC values for specific contrasts. The selection
criteria included an adjusted p-value <0.05 and logFC (fold
change) 1. The DEGs from GEO2R analysis across datasets
were compared to identify common and unique genes
associated with RCC and each subtype using R
programming and Venn diagram was constructed to
determine the number of gene common to the datasets.

Gene ontology and KEGG pathway analysis of DEGs:
The DEGs selected by GEO2R were stratified according to
whether they were upregulated or downregulated. Database
for Annotation, Visualisation and Integrated Discovery
commonly known as DAVID (David.ncifcrf.gov) was used
for annotation of the Gene Ontology (GO) and KEGG
pathway analysis for the common differentially expressed
genes. Gene ontology enrichment analysis was performed to
identify overrepresented biological processes, molecular
functions and cellular components among the cDEGs.

Exploratory data analysis: The distribution of gene
expression values across samples in each dataset was
explored using volcano plots and boxplots. The sample
similarities were assessed using dimensionality reduction
techniques such as principal component analysis (PCA) to
visualise the similarities and differences between samples in
each dataset.

Protein-protein interaction analysis: The STRING
database (http://string-db.org) was employed to group the
cDEGs into a PPI network, with a score of >0.4 being used
as a significance cutoff for network construction. The
network was visualised and analsed  with  Cytoscape  tool.

The Cytoscape Molecular Complex Detection (MCODE)
plugin was further used  for  topological  clustering within
the network as a means of identifying significantly
interconnected gene modules within the overall  PPI
network. The criteria used for significant module
identification  were  degree  of cut-off = 2; node score cut-
off = 0.2; max depth = 100, k-score = 2.

Hub gene selection and analysis: The hub genes were
identified as genes that had a 10 degree of connectivity. The
cBIOPortal (http://www.cbioportal.org) was used to identify
genes that were co-expressed with these hub genes. The
clueGO+cluePaedia cytoscape plugin which permits for
visualisation of non-redundant terms associated with gene
clusters in the networks that have been grouped based on
functionality. The clueGO and CluePedia was used to
identify and visualise biological process associated with
these hub genes.

RESULTS
Differential expressed genes (DEGs) in the samples:
GEO2R an online tool provided by the NCBI Gene
Expression Omnibus (GEO) was used for identifying
differentially expressed genes (DEGs) between the three
samples in the GEO datasets. The GEO2R performed the
necessary normalisation and statistical testing. The GSE
40435 dataset had a total of 1650 DEGs (Fig. 1a),
upregulated genes were 743 (adj. p<0.05 and logFC$ 1) and
downregulated genes were 907 (adj.p<0.05 and logFC#-1),
GSE 6344 had DEGs of 3401 (Fig. 1b), upregulated genes
of 1609 and downregulated  genes  of  1792 while GSE
15641 had a DEGs of 160; the DEGs between clear cell vs
normal, transitional cells vs normal, papillary vs normal,
chromophobe vs normal and oncocytoma vs normal were
1839, 705, 596, 304 and 495 respectively (Fig. 1c) as shown
in the Venn diagrams. Furthermore, the up and download
regulated genes for clear cell were 1679 and 160,
transitional cell were 240 and 465, papillary were 205 and
391, oncocytoma were 180 and 315 and chromophobe were
14 and 190, respectively. The volcano map (Fig. 2a-g)
graphically visualised the selected DEGs with p<0.05 and
LogFc$1, the upregulated shown in red, down regulated in
blue and no difference in black for all the comparison in the
datasets. The R programming was used to extract common
Differentially Expressed Genes (cDEGs) from the seven
subsets. A total of 36  cDEGs  from  these  seven groups
were identified using R programming and they were:
HADH,  SCARB1,  SFRP1,  PCKS,  GLS, ALDOB, TCF21,
SLC13A3,    CALB1,    DUSP9,    HPD,    PRKCH,    DIO1,
XPNPEP2,  AQP2,  UMOD, G6PC, GK, CYP4A11, ADH6,
PTGER3,  SLC34A1,  SLC12A3,  CD300A,  PLG, CAPN3,
TGM2,  ALB,   TLN2,   PPP1R16B,   CLIC5,   ATP6V0A4,
NPHS2, HAO2, KCNMA1 and AGMAT.
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Gene ontology and KEGG pathway analysis of the
cDEGs: The biological classifications of the cDEGs were
analysed with DAVID, to determine the functional and
pathway enrichment analysis. The GO analysis showed that
the Cellular Cell (CC) changes in the cDEGs were
significantly enriched in Extracellular exosome, apical
plasma  membrane,  plasma  membrane,  basolateral  plasma

membrane,  cell  surface,  mitochondrion,  cytosol  and
brush border membrane; Biological Process (BP) changes
were significantly enriched in renal water homeostasis,
micturition, NADH oxidation, metanephric distal convoluted
tubule    development,    response   to   xenobiotic   stimulus,
metanephric collecting duct development, cellular phosphate
ion  homeostasis,  kidney  development,  renal  sodium  ion

Fig. 1(a-c): Venn diagram of dataset GSE 40435 showing total significant genes, (b) Venn diagram of dataset GSE 6344 showing total
significant genes and (c) Venn diagram of dataset GSE 15641 showing significant genes across multiple comparison

Fig. 2(a-g): Continue
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Fig. 2(a-g): Volcano plot of GSE 40435 showing up- and down-regulated genes in the disease status, (b) Volcano plot of GSE 6344
showing up- and down-regulated genes in the disease status (c) Volcano plot of GSE 15641 showing gene signatures between
clear cell vs normal in the RCC, (d) Volcano plot of GSE 15641 showing gene signatures between transitional vs normal in
the RCC, (e) Volcano plot of GSE 15641 showing gene signatures between papillary vs normal in the RCC, (f) Volcano plot
of GSE 15641 showing gene signatures between oncocytoma vs normal in the RCC and (g) Volcano plot of GSE 15641
showing gene signatures between chromophobe vs normal in the RCC

absorption,    negative    regulation    of   androgen   receptor
signalling pathway, glomerular filtration, potassium ion
homeostasis, sodium ion homeostasis, muscle cell cellular

homeostasis, negative regulation of insulin secretion, uteric
bud    development,    negative    regulation    of     fibroblast
proliferation,  gluconeogenesis,  proteolysis and response to
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Table 1: Gene ontology and KEGG enrichment analysis of cDEGs in the three samples of RCC
Category of gene Term Description Gene count p-value Fold enrichment
CC GO:0070062 Extracellular exosome 20 1.81588E-10 5.232612992
CC GO:0016324 Apical plasma membrane 8 3.58055E-06 11.66794598
BP GO:0003091 Renal water homeostasis 3 0.000563609 82.52571429
CC GO:0005886 Plasma membrane 19 0.000837867 2.064869588
BP GO:0060073 Micturition 2 0.005287977 366.7809524
BP GO:0006116 NADH oxidation 2 0.007044597 275.0857143
BP GO:0072221 Metanephric distal convoluted tubule development 2 0.007044597 275.0857143
CC GO:0016323 Basolateral plasma membrane 4 0.009098629 8.985659551
BP GO:0009410 Response to xenobiotic stimulus 4 0.009616181 8.802742857
BP GO:0072205 Metanephric collecting duct development 2 0.015783 122.2603
BP GO:0030643 Cellular phosphate ion homeostasis 2 0.017521 110.0343
BP GO:0001822 Kidney development 3 0.018676 13.86987
CC GO:0009986 Cell surface 5 0.021139 4.55213
BP GO:0070294 Renal sodium ion absorption 2 0.022719 84.64176
BP GO:0060766 Negative regulation of androgen receptor signalling pathway 2 0.02617 73.35619
CC GO:0005739 Mitochondrion 7 0.028065 2.876104
MF GO:0034185 Apolipoprotein binding 2 0.030185 63.47227
BP GO:0003094 Glomerular filtration 2 0.034744 55.01714
BP GO:0055075 Potassium ion homeostasis 2 0.034744 55.01714
BP GO:0055078 Sodium ion homeostasis 2 0.034744 55.01714
BP GO:0046716 Muscle cell cellular homeostasis 2 0.044937 42.32088
CC GO:0005829 Cytosol 15 0.051265 1.588354
BP GO:0046676 Negative regulation of insulin secretion 2 0.056697 33.34372
BP GO:0001657 Ureteric bud development 2 0.063353 29.739
BP GO:0048147 Negative regulation of fibroblast proliferation 2 0.063353 29.739
BP GO:0006094 Gluconeogenesis 2 0.084674 22.00686
BP GO:0006508 Proteolysis 4 0.086084 3.711106
MF GO:0042802 Identical protein binding 7 0.086556 2.17797
BP GO:0051592 Response to calcium ion 2 0.089527 20.76119
CC GO:0031526 Brush border membrane 2 0.097839 18.91336
KEGG_PATHWAY hsa00010: Glycolysis/Gluconeogenesis 3 0.014577697 15.51402985
KEGG_PATHWAY hsa01100 Metabolic pathways 10 0.018016 2.241138
KEGG_PATHWAY hsa04964 Proximal tubule bicarbonate reclamation 2 0.061898 30.1287
KEGG_PATHAWY hsa00350 Tyrosine metabolism 2 0.095241 19.24889

calcium ion while molecular functions (MF) changes were
significantly  enriched  in apolipoprotein and identical
protein binding.   The   analysis   of   the    KEGG    pathway 
proved that the cDEGs were significantly enriched in
glycolysis/gluconeogenesis, metabolic pathways, proximal
tubule bicarbonate reclamation and tyrosine metabolism
(Table 1).

Modular analysis of the cDEGs protein-protein
interaction network (PPI): The modular structure was
designed by using an online database called STRING
(available online: http://string-db.org ). This database was
used to explore the 36 cDEGs to construct the PPI network
of cDEGs (Fig. 3a). The STRING network statistics showed
that the number of nodes were 36, number of edges were 42,
average node degree was 2.33, average local clustering
coefficient was 0.388, expected number of edges was 8 and
PPI enrichment p-value was <1.0e-16. This means that the
proteins in the cDEGs have more interactions among
themselves than what would be expected for a random set of
proteins of the same size and  degree  distribution drawn
from the genome. This was further expanded by using
clueGO+cluePaedia to establish the network interaction of
the cDEGs (Fig. 3b). Such an enrichment indicates that the

proteins are at least partially biologically connected as a
group. The functional enrichments of the network include
gene ontology such as biological process (Table 2), cellular
component (Table 3) and KEGG pathways (Table 4). The
network described and visualised the disease-gene
association, the genes that are related to kidney disease in
pathway are ALB, AQP2, UMOD, NPHS2, SLC34A1,
SLC12A3, AGMAT AND ATP6V0A4 and are highlighted
in red (Fig 3b), while the genes involved in the genetic
disease are SCARB1, G6PC, PLG, ALDOB, HPD, CLIC5,
ALB, GK, GLS, TGM2, AGP2, UMOD, SLC34A1, HADH,
NPHS2, SLC12A3, ATP6V0A4 and CAPN3 were all
indicated with blue colours (Fig 3c). The overlap of genes
that have the potential to cause both genetic and kidney
diseases were indicated with both colours and they were
ALB, AQP2, UMOD, NPHS2, SLC34A1, SLC12A3,
AGMAT and ATP6V0A4 (Fig 3d and e).

The k-means clustering was applied to identify patterns
and groupings among the genes (Fig 4a-d.). the visualisation
of the results showed that each colour corresponds to a
distinct cluster determined by the algorithm. Four distinct
points were determined and coloured red, yellow, green and
blue. This colour coding gave an insight how the gene are
groups based on their similarity to each cluster’s centroid. It
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Fig. 3(a-e): Continue
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Fig. 3(a-e): Continue
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Fig. 3(a-e): Modular structure of the Protein-protein Interactions (PPI) network of the cDEGs, (b) Enrichment pathway of the cDEGs using
clueGO + cluePadia to show the interaction of the cDEGs in the network, (c) Genes related to kidney disease in the PPI
network (gene coloured in red), (d) Genes associated with genetic disease (gene coloured in Blue) and (e) Overlap in Genes
that are kidney-genetic disease

Table 2: Functional enrichment of Biological Process (Gene Ontology) in the PPI network
GO-term Description Count in network Strength False discovery rate
GO:0042592 Homeostatic process 16 0f 1406 0.79 1.40e-05
GO:0048878 Chemical homeostasis 13 of 904 0.9 2.90e-05
GO:0006082 Organic metabolic process 12 of 868 0.88 0.00014
GO:0003014 Renal system process 6 of 111 1.47 0.00024
GO:0001822 Kidney development 8 of 296 1.17 0.00024
GO:0019725 Cellular homeostasis 10 0f 628 0.94 0.00030
GO:0019752 Carboxylic acid metabolic process 11 of 819 0.87 0.00030
GO:0065008 Regulation of biological quality 21 of 3654 0.5 0.0030
GO:0044282 Small molecule catabolic process 8 of 369 1.07 0.00041
GO:0050801 Ion homeostasis 9 of 527 0.97 0.00044
GO:0044281 Small molecule metabolic process 14 of 1645 0.67 0.00060
GO:0001656 Metanephros development 5 of 85 1.51 0.00062
GO:0055081 Anion homeostasis 4 of 49 1.65 0.0025
GO:0098771 Inorganic ion homeostasis 8 of 514 0.94 0.0033
GO:007044 Collecting duct development 8 of 15 2.04 0.0039
GO:0072073 Kidney epithelium development 5 of 136 1.3 0.0045
GO:0007588 Excretion 3 of 17 1.98 0.0049
GO:0072243 Metanephric nephron epithelium development 3 of 18 1.96 0.0054
GO:0051049 Regulation of transport 13 of 1763 0.61 0.0055
GO:0055067 Monovalent inorganic cation homeostasis 5 of 151 1.26 0.0061
GO:0032879 Regulation of localisation 14 of 2103 0.56 0.0064
GO:0003091 Renal water homeostasis 3 of 23 1.85 0.0085
GO:1901615 Organic hydroxy compound metabolic process 7 of 478 0.9 0.0136
GO:0055080 Cation homeostasis 7 of 499 0.89 0.0171
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Table 2: Continue
GO-term Description Count in network Strength False discovery rate
GO:0055082 Cellular chemical homeostasis 7 of 523 0.86 0.0222
GO:0055075 Potassium ion homeostasis 3 of 35 1.67 0.0235
GO:0072009 Nephron epithelium development 4 of 105 1.32 0.0235
GO:0055078 Sodium ion homeostasis 3 of 38 1.64 0.0278
GO:0046395 Carboxylic acid catabolic process 5 of 225 1.08 0.0278
GO:0006116 NADH oxidation 2 of 5 2.34 0.0303
GO:0015746 Citrate transport 2 of 5 2.34 0.0303
GO:0072221 Metanephric distal convoluted tubule development 2 of 5 2.34 0.0303
GO:1901700 Response to oxygen-containing compound 11 of 1547 0.59 0.0303
GO:0055065 Metal ion homeostasis 6 of 413 0.9 0.0303
GO:0006873 Cellular ion homeostasis 6 of 421 0.89 0.0416
The count in the network, the first number indicates how many proteins in the network are annotated with a specified term. The second number indicates
how many proteins in total in the network and background have the term assigned. The strength expressed as log10 (observed/expected), described how
large the enrichment effect is. It is the ratio between the number of proteins in the network that are annotated with a term and the number of proteins that
are expected to be annotated with this term in a random of the same size. The false discovery rate shows how significant the enrichment is. It is the p-values
corrected for multiple testing within each category using Benjamini-Hochberg

Table 3: Functional enrichment of Cellular Component (Gene Ontology) in the PPI network
GO-term Description Count in network Strength False discovery rate
GO:0070062 Extracellular exosome 20 of 2096 0.72 1.01e-07
GO:0016324 Apical plasma membrane 8 of 367 1.08 0.00010
GO:0031982 Vesicle 21 of 3957 0.46 0.00016
GO:0005886 Plasma membrane 22 of 5544 0.34 0.0078
GO:0071944 Cell periphery 23 of 6015 0.42 0.0078
GO:0098590 Plasma membrane region 10 0f 1237 0.65 0.0093
GO:0043226 Organelle 35 of 14017 0.14 0.0119
GO:0043227 Membrane-bounded organelle 34 of 13188 0.15 0.0136
GO:0098862 Cluster of actin-based cell projections 4 of 163 1.13 0.0322

Table 4: Functional enrichment of KEGG Pathway in the PPI network
GO-term Description Count in network Strength False discovery rate
has:00010 Glycolysis/gluconeogenesis 4 of 83 1.52 0.0024
has:01100 Metabolic pathways 11 of 1435 0.62 0.0057
has:03320 PPAR signalling pathway 3 of 75 1.34 0.0432

Fig. 4(a-e): Continue
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Fig. 4(a-e): Cluster 1 in red with 8 gene count, (b). Cluster 2 in yellow with 6 gene count, © Cluster  3  in  green  with  4  gene  count, (d)
Cluster 4 in blue with 3 gene count and (e) Enrichment pathway of the hub genes

is clear from the plot that k-means has effectively partitioned
the gene into meaningful clusters. The number of gene count
in each cluster were 8 in red, 6 in yellow, 4 in green and 3 in
blue. While the description/function of the protein name in
each cluster as indicated by the k-means cluster are
summarised in the Table 5.

Hub genes selection and analysis: A total of 12 hub genes
were identified with betweenness degree 10. The hub genes
symbols, full name and functions are shown in Table 6. The
network of the 12 hub genes and their co-expression genes
and the biological process analysis of the hub genes also
displayed in FIG. 4e. The genes enrichment pathway of the
hub genes using clueGO + clue Paedia clearly indicates how
the genes interact with each other and the gene that has the
most enriched pathway.

DISCUSSION
A tumour represents a multifaceted disease influenced

by numerous genes, with its development linked to a variety
of factors including metabolic capacity and immune
regulation.  The  fundamental  characteristic of a  tumour is
the disruption of cell cycle regulation, which leads to
uncontrolled cell proliferation27,28. This uncontrolled
proliferation can be attributed to the activation of one or
more proto-oncogenes and the mutation or deletion of
tumour suppressor genes. The activation of proto-oncogenes
can transform them into oncogenes, promoting unchecked
cellular growth, while the loss of tumour suppressor genes
removes critical regulatory mechanisms that ordinarily
prevent excessive cell division29.

Genetic deletions and mutations can have profound
implications  for  the  immune  system’s ability to recognize
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Table 5: Protein description/function in the k-means clustering method

Cluster no. Cluster colour Gene count Protein name Protein identifier Protein description

1 Red 8 ALB 9606: ENSP00000295897 Serum albumin; Serum albumin, the main protein of plasma, 
has a good binding capacity for water, Ca(2+), Na(+), K(+), fatty
acids, hormones, bilirubin and drugs (Probable). Its main function
is  the  regulation  of  the  colloidal   osmotic   pressure   of   blood
blood (Probable). Major zinc transporter in plasma, typically
binds  about  80%  of  all   plasma   zinc.   Major   calcium   and
magnesium  transporter  in  plasma,  binds   approximately   45%
of  circulating  calcium  and magnesium in plasma (By similarity).
Potentially  has  more  than  two  calcium-binding  sites and might
additionally bind calcium in a non-specific manner

1 Red 8 CALB1 9606.ENSP00000265431 Calbindin; Buffers cytosolic calcium. May stimulate a membrane
Ca(2+)- ATPase and a 3',5'-cyclic nucleotide phosphodiesterase

1 RED 8 NPHS2 9606.ENSP00000356587 Podocin; Plays a role in the regulation of glomerular  permeability
acting probably as a linker between the plasma membrane and 
the cytoskeleton

1 RED 8 PLG 9606.ENSP00000308938 Plasmin heavy chain A, short form; Plasmin dissolves the fibrin
of blood clots and acts as a proteolytic factor in a variety of other
processes including embryonic development, tissue remodelling,
tumour invasion and inflammation. In ovulation, weakens the
walls  of  the  Graafian  follicle.  It  activates   the   urokinase-type
plasminogen activator, collagenases and several complement
zymogens,  such  as  C1  and  C5.  Cleavage  of  fibronectin and
laminin leads to cell detachment and apoptosis. Also cleaves 
fibrin, thrombospondin and von Willebrand factor. It role in tissue
remodelling and tumour invasion

1 Red 8 PTGER 9606.ENSP00000349003 Prostaglandin    E2    receptor    EP3    subtype;    Receptor   for
prostaglandin E2 (PGE2). The activity of this receptor can couple
to  both  the  inhibition  of  adenylate  cyclase  mediated  by G(I)
proteins and to an elevation of intracellular calcium. Required
for  normal  development  of  fever  in   response   to   pyrogens,
including IL1B, prostaglandin E2 and bacterial lipopolysaccharide 
(LPS). Required for normal potentiation of platelet aggregation
by prostaglandin E2 and thus plays a role in the regulation of
blood coagulation. Required for increased HCO3(-) secretion
in the duodenum in response to muco

1 Red 8 SCARB1 9606.ENSP00000261693 Scavenger receptor class B member 1; Receptor for different
ligands such as phospholipids, cholesterol ester, lipoproteins, 
phosphatidylserine    and   apoptotic   cells.   Receptor   for   HDL,
mediating    selective   uptake   of   cholesteryl   ether   and   HDL-
dependent cholesterol efflux. Also facilitates the flux of free 
and  esterified  cholesterol  between  the  cell  surface  and   apoB-
containing lipoproteins and modified lipoproteins, although less
efficiently than HDL. May be involved in the phagocytosis of
apoptotic    cells,   via   its   phosphatidylserine   binding   activity.
Belongs to the CD36 family

1 Red 8 TGM2 9606.ENSP00000355330 Protein-glutamine gamma-glutamyltransferase 2; Catalyzes the
cross-linking of proteins, such as WDR54 and the conjugation
of polyamines to proteins

1 Red 8 TLN2 9606.ENSP00000453508 Talin-2; As a major component of focal adhesion plaques that
links integrin to the actin cytoskeleton, may play an important
role in cell adhesion. Recruits PIP5K1C to focal adhesion plaques
and strongly activates its kinase activity (By similarity)

2 Yellow 6 AQP2 9606.ENSP00000199280 Aquaporin-2; Forms a water-specific channel that provides the
plasma membranes of renal collecting duct with high permeability
to water, thereby permitting water to move in the direction of
an  osmotic  gradient.  Plays  an   essential   role   in   renal   water
homeostasis

2 Yellow 6 GK 9606.ENSP00000401720 Glycerol kinase; Key enzyme in the regulation of glycerol uptake
and metabolism; Belongs to the FGGY kinase family
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Table 5: Continue
Cluster no. Cluster colour Gene count Protein name Protein identifier Protein description
2 Yellow 6 KCNMA1 9606.ENSP00000286628 Calcium-activated potassium channel subunit alpha-1; Potassium

channel activated by both membrane depolarization or increase
in  cytosolic  Ca(2+)  that  mediates  export  of  K(+).  It  is  also
It  is  also  activated  by  the  concentration  of  cytosolic  Mg(2+).
Its  activation  dampens  the  excitatory  events  that elevate the
cytosolic   Ca(2+)   concentration   and/or   depolarize   the   cell
membrane.  It  therefore  contributes  to  repolarization   of   the
membrane potential. Plays a key role in controlling excitability
in several systems, such as regulation of the contraction of smooth
muscle

2 Yellow 6 SLC12A3 9606.ENSP00000402152 Solute carrier family 12 member 3; Electroneutral sodium and
chloride ion cotransporter. In kidney distal convoluted tubules,
key  mediator  of  sodium  and   chloride   reabsorption.   Receptor
for the proinflammatory cytokine IL18. Contributes to IL18-
induced cytokine production, including IFNG, IL6, IL18 and
CCL2. May act either independently of IL18R1, or in a complex
with IL18R1

2 Yellow 6 SLC34A1 9606.ENSP00000321424 Sodium-dependent phosphate transport protein 2A; invoived
in actively transporting phosphate into cells via Na(+) cotransport
in the renal brush border membrane. Probably mediates 70-80%
of the apical influx; Belongs to the SLC34A transporter family

2 Yellow 6 UMOD 9606.ENSP00000379438 Uromodulin,   secreted   form;   [Uromodulin]:   Functions   in
biogenesis  and  organization  of the apical membrane of epithelial
cells of the thick ascending limb of Henle's loop (TALH), where
it promotes formation of complex filamentous gel-like structure
that may play a role in the water barrier permeability (Probable).
May serve as a receptor for binding and endocytosis of cytokines
(IL-1, IL-2) and TNF. Facilitates neutrophil migration across
renal epithelia

3 Green 4 ADH6 9606.ENSP00000378359 Alcohol dehydrogenase 6.
3 Green 4 CYP4A11 9606.ENSP00000311095 Cytochrome P450 4A11; A cytochrome P450 monooxygenase

involved in the metabolism of fatty acids and their oxygenated 
derivatives (oxylipins).
Mechanistically, uses molecular oxygen inserting one oxygen 
atom into a substrate and reducing the second into a water
molecule, with two electrons provided by NADPH via
cytochrome P450 reductase (CPR; NADPH- ferrihemoprotein
reductase).  Catalyzes  predominantly   the   oxidation   of   the
terminal    carbon    (omega-oxidation)     of     saturated     and
unsaturated fatty acids, the catalytic efficiency decreasing in
the following order: dodecanoic > tetradecanoic

3 Green 4 HAO2 9606.ENSP00000354314 Hydroxyacid  oxidase  2;  Catalyzes  the   oxidation   of   L-alpha-
hydroxy acids as well as, more slowly, that of L-alpha-amino
acids;  Belongs   to   the   FMN-dependent   alpha-hydroxy   acid
dehydrogenase family

3 Green 4 HPD 9606.ENSP00000289004 4-hydroxyphenylpyruvate  dioxygenase;  Key  enzyme   in   the
degradation of tyrosine; Belongs to the 4HPPD family.

4 Blue 3 ALDOB 9606.ENSP00000497767 Aldolase, fructose-bisphosphate B.
4 Blue 3 G6PC 9606.ENSP00000253801 Glucose-6-phosphatase; Hydrolyses glucose-6-phosphate to

glucose in the endoplasmic reticulum. Forms with the glucose-6-
phosphate transporter (SLC37A4/G6PT) the complex responsible 
for      glucose     production     through     glycogenolysis     and
gluconeogenesis. Hence, it is the key enzyme in homeostatic
regulation of blood glucose levels; Belongs to the glucose-6-
phosphatase family

4 BLUE 3 PCK2 9606.ENSP00000216780 Phosphoenolpyruvate    carboxykinase     [GTP],     mitochondrial;
Catalyses    the    conversion    of    oxaloacetate    (OAA)     to
phosphoenolpyruvate  (PEP),   the   rate-limiting   step   in   the
metabolic pathway that produces glucose from lactate and other
precursors  derived  from  the  citric  acid  cycle; Belongs to the
phosphoenolpyruvate carboxykinase [GTP] family
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Table 6: Functional roles of 12 hub genes with betweenness degrees 10
No. Gene symbol Full name Function
1 ALB Serum albumin The  main  protein  plasma,  has  a  good  binding  capacity  for  water,  Ca  92+), Na(+), fatty acids,

hormones, bilirubin and drugs. Its main function is the regulation of the colloidal osmotic pressure
of blood. Major zinc transporter in plasma, typically binds about 80% of all plasma zinc. Maor
calcium and magnesium transporter in plasma, binds approximately 45% of circulating calcium
and  magnesium  in  plasma.  Potentially  has  more  than  two   calcium-binding   sites   and   might
additionally bind in a non-specific manner

2 ALDOB aldolase Fructose-bisphosphate B
3 AQP2 Aquaporin-2 Forms a water-specific channel that provides the plasma membranes of renal collecting duct with 

high permeability to water, thereby permitting water to move in the direction of an osmotic
gradient.
Plays an essential role in renal water homeostasis

4 G6PC Glucose-6-phospahtase Hydrolyse glucose-6-phospahe to glucose in the endoplasmic reticulum. Forms with the glucose-6-
phostae transporter (SLC£&A$/G^PT) the complex responsible for glucose production through
glycogenolysis and gluconeogenesis. Hence, it is the key enzyme in homeostatic regulation of
blood glucose levels, belongs to the glucose-6-phospahte family

5 GK Glycerol kinase Key enzyme in the regulation of glycerol uptake and metabolism
6 HAO2 Hydroxy acid oxidase-2 Catalyses the oxidation of L-alpha-hydroxy acids as well as, more slowly, that of L-alpha-amino

acids
7 HPD 4-hydroxyphenylpyruvate Key enzyme in the degradation of tyrosine

dioxygenase
8 NPHS2 Podocin Plays a role in the regulation of glomerular permeability, acting probably as a linker between the 

plasma membrane and the cytoskeleton
9 SCARB1 Scavenger receptor Receptor    for    different    ligands    such    as    phospholipids,    cholesterol    ester,    lipoproteins,

class B member 1 phosphatidylserine  and  apoptotic  cells.  Receptors  for  HDL,  mediating  selective  update   of
cholesteryl  ester  and  HDL-dependent  cholesterol  efflux.  Also,  facilitates  the  flux of free and
esterified  cholesterol  between  the  cell  surface  and  apoB-containing  lipoproteins  and  modified
lipoproteins, although less efficiently than HDL. May be involved in the phagocytosis of apoptotic
cells, via its phosphatidylserine binding activity

10 SLC12A3 Solute carrier Electroneutral sodium and chloride ion cotransporter. In kidney, distal convoluted  tubules, key 
family 12 member mediator of sodium and chloride reabsorption. Receptor for the proinflammatory cytokine IL 18.

Contributes   to   IL   18-induced   cytokine   production,   including  IFNG,  IL6,  IL  18 and CCL2.
11 SLC34A1 Sodium-dependent phosphate transport protein 2A, involved in actively transporting phosphate

into cells via Na(+) cotransport in the renal brush border membrane. Probably mediates 70-80% 
of the apical influx 

12 UMOD Uromodulin Functions in biogenesis and organisation of the apical membrane of epithelial cells of the thick 
ascending limb of Henle’s loop, where it promotes formation  of  complex  filamentous  gel-like
structure that may play a role in the water barrier permeability. May serve as a receptor for binding 
and endocytosis cytokines (IL-1, IL-2) and TNF. Facilitates neutrophil migration across  renal 
epithelia

and respond to tumours. These genetic alterations can create
conditions that enable the tumour cells to evade immune
surveillance, a phenomenon known as immune escape30.
This immune evasion is a significant barrier to effective
immune-mediated tumour clearance and represents a critical
area of research in cancer biology. As such, understanding
the changes in gene expression levels in cancer is of
paramount importance, as these changes underpin many of
the pathological features of tumours.

The insidious and often asymptomatic onset of
symptoms in many cancers, including Renal Cell Carcinoma
(RCC), frequently results in delayed diagnosis until the
disease has progressed to an advanced stage. The RCC is
known for its late presentation due to its asymptomatic
nature in the early stages31. This delay in diagnosis
significantly complicates treatment and adversely affects
prognosis. Therefore, there is an urgent and critical need to
identify specific biomarkers that can facilitate earlier
diagnosis of RCC. Biomarkers can provide critical insights
into the presence and progression of the disease and can also
serve as targets for novel therapeutic interventions.

The identification of effective therapeutic targets is
another crucial aspect of improving RCC outcomes. By
understanding the molecular and genetic underpinnings of
RCC, researchers can develop targeted therapies that
specifically address the pathways and mechanisms involved
in tumour growth and immune evasion. Such targeted
therapies hold the potential to improve treatment efficacy
and reduce the adverse effects associated with conventional
treatments.

Furthermore, the study of gene expression changes in
cancer, particularly RCC, is essential for advancing our
understanding of tumour biology, improving diagnostic
accuracy and developing effective treatments. The
complexity of tumour development and progression
underscores  the  need  for  a  comprehensive   approach   to
cancer research that integrates genetic, molecular and
immunological perspectives.

In this study, three mRNA microarray datasets
(GSE6344, GSE40435 and GSE 15641) were analysed to
identify Differentially Expressed Genes (DEGs) between
kidney  cancer  and  non-cancerous  tissues.  The Common
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DEGs were extracted using R programming, leading to the
identification of 36 common DEGs (cDEGs) across seven
subsets. These cDEGs include HADH, SCARB1, SFRP1,
PCKS, GLS, ALDOB, TCF21, SLC13A3, CALB1, DUSP9,
HPD, PRKCH, DIO1, XPNPEP2, AQP2, UMOD, G6PC,
GK, CYP4A11, ADH6, PTGER3, SLC34A1, SLC12A3,
CD300A, PLG, CAPN3, TGM2, ALB, TLN2, PPP1R16B,
CLIC5, ATP6V0A4, NPHS2, HAO2, KCNMA1 and
AGMAT.

The  GO  enrichment  analysis indicated that these
genes were predominantly enriched in various Cellular
Components (CC), including extracellular exosome, apical
plasma membrane, plasma membrane, basolateral plasma
membrane, cell surface, mitochondrion, cytosol and brush
border membrane. Additionally, the genes were enriched in
Biological Processes (BP) such as renal water homeostasis,
micturition, NADH oxidation, metanephric distal convoluted
tubule development, response to xenobiotic stimulus,
metanephric collecting duct development, cellular phosphate
ion homeostasis, kidney development, renal sodium ion
absorption, negative regulation of androgen receptor
signalling pathway, glomerular filtration, potassium ion
homeostasis, sodium ion homeostasis, muscle cell cellular
homeostasis, negative regulation of insulin secretion,
ureteric bud development, negative regulation of fibroblast
proliferation, gluconeogenesis, proteolysis and response to
calcium ion. In terms of molecular function (MF), the genes
were enriched in apolipoprotein binding and identical
protein binding.

KEGG  pathway  analysis  revealed  that  these genes
are involved in glycolysis/gluconeogenesis, metabolic
pathways, proximal tubule bicarbonate reclamation and
tyrosine metabolism.

Various studies have demonstrated  that these pathways
play significant roles in carcinogenesis and cancer
progression. For instance, exosomes are known to mediate
communication between tumour cells and their
microenvironment by transporting oncogenic proteins and
RNAs, thus influencing cancer progression and metastasis32.
Santarpia et al.33 highlighted that the plasma membrane and
its specialized regions are critical for cell signalling and
interactions that promote tumour growth and metastasis via
activation of receptor tyrosine kinases and other signalling
pathways.

Wallace34 emphasized the importance of mitochondria
in the metabolic reprogramming of cancer cells, supporting
the high energy demands and biosynthesis requirements
through altered metabolic pathways such as glycolysis.
Similarly, Gatenby and Gillies35 reported that the cytosol is
integral to various metabolic processes and signalling
pathways that are altered in cancer, contributing to
uncontrolled cell proliferation.

DeBerardinis and Chandel36 discussed how altered
metabolic pathways, including those involving NADH,

support the bioenergetic and anabolic needs of cancer cells.
The ability of cancer cells to handle xenobiotics, including
drugs, influences their survival and resistance to
chemotherapy37. Dysregulation in phosphate metabolism can
affect signalling pathways that promote cancer cell growth
and survival38.

Wang and Dong39 noted that cancer cells often exhibit
altered gluconeogenesis pathways, contributing to the
metabolic flexibility required for rapid growth. Proteolysis,
particularly via the ubiquitin-proteasome system, is crucial
in regulating proteins that control the cell cycle and
apoptosis. Dysregulation of this system can lead to
uncontrolled cell growth40.

Darwish et al.41 described how lipid metabolism is
altered in many cancers and apolipoproteins can influence
tumour growth and metastasis through their roles in lipid
transport and metabolism. Pawson and Nash42 explained that
protein-protein interactions are fundamental in signalling
pathways that control cell proliferation, survival and
differentiation, which are often dysregulated in cancer.

The Warburg effect, which describes the preference of
cancer cells for glycolysis over oxidative phosphorylation
even under aerobic conditions, supports rapid growth and
survival43,44. DeBerardinis and Thompson45 discussed how
cancer cells reprogram their metabolism to support anabolic
growth, involving various metabolic pathways to meet their
increased demand for energy and macromolecules. Finally,
Hubbard and Till46 reported that  tyrosine  kinases,  which
are often mutated or overexpressed in cancers, drive
uncontrolled cell proliferation and survival, making them
key targets in cancer therapy.

These components and pathways are intricately
involved in the mechanisms of carcinogenesis and cancer
progression, highlighting their importance in understanding
cancer biology and developing targeted therapies.

The analysis of 36 common Differentially Expressed
Genes (cDEGs) using Protein-protein Interaction (PPI)
networks via STRING and Cytoscape yielded significant
insights into the molecular interactions and potential
functional associations in Renal Cell Carcinoma (RCC).
These computational tools facilitated the construction of a
robust PPI network, which provided a comprehensive view
of the direct and indirect interactions among the identified
genes. Through visualization and analysis in Cytoscape, key
hub genes central to RCC pathogenesis and progression
were identified, including ALB, ALDOB, AQP2, G6PC,
GK, HAO2, HPD, NPHS2, SCARB1, SLC12A3, SLC34A1
and UMOD.

Within the constructed network, these hub genes
emerged as pivotal nodes with extensive connectivity,
indicating their critical roles in various cellular functions
implicated in cancer biology. For instance, ALB, known for
its role in maintaining oncotic pressure and transporting
substances,   is   also   involved   in   lipid   metabolism   and
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hormone transport, potentially influencing tumour growth
and metabolic adaptations41. ALDOB, a key glycolytic
enzyme, contributes to the Warburg effect observed in RCC,
facilitating aerobic glycolysis and supporting cancer cell
proliferation43.

AQP2, integral to water homeostasis, may affect RCC
by modulating tumour cell hydration status, thereby
impacting cell survival and proliferation dynamics32. The
G6PC, essential in gluconeogenesis and GK, pivotal in
glycerol metabolism and lipid biosynthesis, underscore
metabolic pathways altered in cancer, providing tumour
cells with growth advantages through enhanced glucose
availability and lipid metabolism modulation39,34.

Furthermore, HAO2, involved in fatty acid metabolism
and HPD, critical in tyrosine metabolism, highlight
metabolic reprogramming and signaling dysregulation
observed in RCC cells36,46. NPHS2, crucial for podocyte
integrity and SCARB1, implicated in cholesterol uptake and
lipid metabolism, suggest roles in RCC through maintenance
of structural integrity and metabolic reprogramming,
respectively33,41.

The functional modules identified through Cytoscape's
clustering algorithms, such as MCODE, further enriched our
understanding of biological processes critical to RCC
development. These modules highlighted pathways like
metabolic reprogramming, signal transduction and ion
transport, all pivotal in cancer cell survival, proliferation and
metastasis27,38,46.

The identification of hub genes and functional modules
through PPI network analysis provides valuable insights into
potential therapeutic targets for RCC. Targeting these genes
and pathways, such as metabolic reprogramming and signal
transduction, could disrupt cancer cell proliferation and
metastasis, offering novel avenues for therapeutic
intervention in RCC. Future studies should validate these
findings experimentally and explore additional molecular
mechanisms underlying RCC progression to further enhance
therapeutic strategies.

CONCLUSION
In conclusion, the comprehensive analysis of

Differentially Expressed Genes (DEGs) and Protein-protein
Interaction (PPI) networks in Renal Cell Carcinoma (RCC)
has shed light on crucial molecular mechanisms driving
tumorigenesis and progression. The identified hub genes,
including ALB, ALDOB, AQP2, G6PC, GK, HAO2, HPD,
NPHS2, SCARB1, SLC12A3, SLC34A1 and UMOD,
underscore the importance of metabolic reprogramming,
signal  transduction  and  ion  transport  in  RCC
pathophysiology. These genes play pivotal roles in
facilitating cancer cell survival, proliferation and metastasis
through their involvement in pathways such as glycolysis,
lipid metabolism and cellular homeostasis.

Furthermore, the enrichment of these genes in
biological processes and molecular functions critical to
cancer biology highlights their potential as therapeutic
targets. Targeted interventions aimed at disrupting these
pathways could offer new avenues for RCC treatment,
potentially improving patient outcomes and therapeutic
efficacy. The integration of bioinformatics approaches, such
as GO enrichment and KEGG pathway analyses, has
provided a comprehensive framework for understanding
RCC at a molecular level and identifying novel biomarkers
and therapeutic strategies.

Moving forward, experimental validation of these
findings will be essential to confirm the functional roles of
identified genes and validate their potential as targets for
therapeutic intervention. Continued research into the
intricate molecular networks underlying RCC progression
promises to enhance our understanding of cancer biology
and pave the way for personalized treatment approaches
tailored to individual patient profiles.
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